skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qiao, Dan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 9, 2025
  2. We study the generalization of two-layer ReLU neural networks in a univariate nonparametric regression problem with noisy labels. This is a problem where kernels (\emph{e.g.} NTK) are provably sub-optimal and benign overfitting does not happen, thus disqualifying existing theory for interpolating (0-loss, global optimal) solutions. We present a new theory of generalization for local minima that gradient descent with a constant learning rate can \emph{stably} converge to. We show that gradient descent with a fixed learning rate η can only find local minima that represent smooth functions with a certain weighted \emph{first order total variation} bounded by 1/η−1/2+O˜(σ+MSE‾‾‾‾‾√) where σ is the label noise level, MSE is short for mean squared error against the ground truth, and O˜(⋅) hides a logarithmic factor. Under mild assumptions, we also prove a nearly-optimal MSE bound of O˜(n−4/5) within the strict interior of the support of the n data points. Our theoretical results are validated by extensive simulation that demonstrates large learning rate training induces sparse linear spline fits. To the best of our knowledge, we are the first to obtain generalization bound via minima stability in the non-interpolation case and the first to show ReLU NNs without regularization can achieve near-optimal rates in nonparametric regression. 
    more » « less
  3. We study the problem of multi-agent reinforcement learning (MARL) with adaptivity constraints -- a new problem motivated by real-world applications where deployments of new policies are costly and the number of policy updates must be minimized. For two-player zero-sum Markov Games, we design a (policy) elimination based algorithm that achieves a regret of O˜(H3S2ABK‾‾‾‾‾‾‾‾‾‾√), while the batch complexity is only O(H+loglogK). In the above, S denotes the number of states, A,B are the number of actions for the two players respectively, H is the horizon and K is the number of episodes. Furthermore, we prove a batch complexity lower bound Ω(HlogAK+loglogK) for all algorithms with O˜(K‾‾√) regret bound, which matches our upper bound up to logarithmic factors. As a byproduct, our techniques naturally extend to learning bandit games and reward-free MARL within near optimal batch complexity. To the best of our knowledge, these are the first line of results towards understanding MARL with low adaptivity. 
    more » « less
  4. The offline reinforcement learning (RL) problem is often motivated by the need to learn data-driven decision policies in financial, legal and healthcare applications. However, the learned policy could retain sensitive information of individuals in the training data (e.g., treatment and outcome of patients), thus susceptible to various privacy risks. We design offline RL algorithms with differential privacy guarantees which provably prevent such risks. These algorithms also enjoy strong instance-dependent learning bounds under both tabular and linear Markov Decision Process (MDP) settings. Our theory and simulation suggest that the privacy guarantee comes at (almost) no drop in utility comparing to the non-private counterpart for a medium-size dataset. 
    more » « less
  5. Ruiz, Francisco and (Ed.)
    Motivated by personalized healthcare and other applications involving sensitive data, we study online exploration in reinforcement learning with differential privacy (DP) constraints. Existing work on this problem established that no-regret learning is possible under joint differential privacy (JDP) and local differential privacy (LDP) but did not provide an algorithm with optimal regret. We close this gap for the JDP case by designing an $$\epsilon$$-JDP algorithm with a regret of $$\widetilde{O}(\sqrt{SAH^2T}+S^2AH^3/\epsilon)$$ which matches the information-theoretic lower bound of non-private learning for all choices of $$\epsilon> S^{1.5}A^{0.5} H^2/\sqrt{T}$$. In the above, $$S$$, $$A$$ denote the number of states and actions, $$H$$ denotes the planning horizon, and $$T$$ is the number of steps. To the best of our knowledge, this is the first private RL algorithm that achieves privacy for free asymptotically as $$T\rightarrow \infty$$. Our techniques — which could be of independent interest — include privately releasing Bernstein-type exploration bonuses and an improved method for releasing visitation statistics. The same techniques also imply a slightly improved regret bound for the LDP case. 
    more » « less
  6. Motivated by personalized healthcare and other applications involving sensitive data, we study online exploration in reinforcement learning with differential privacy (DP) constraints. Existing work on this problem established that no-regret learning is possible under joint differential privacy (JDP) and local differential privacy (LDP) but did not provide an algorithm with optimal regret. We close this gap for the JDP case by designing an ϵ-JDP algorithm with a regret of O˜(sqrt(SAH^2T) +S^2AH^3/ϵ) which matches the information-theoretic lower bound of non-private learning for all choices of ϵ>S^1.5A^0.5H^2/sqrt(T). In the above, S, A denote the number of states and actions, H denotes the planning horizon, and T is the number of steps. To the best of our knowledge, this is the first private RL algorithm that achieves \emph{privacy for free} asymptotically as T→∞. Our techniques -- which could be of independent interest -- include privately releasing Bernstein-type exploration bonuses and an improved method for releasing visitation statistics. The same techniques also imply a slightly improved regret bound for the LDP case. 
    more » « less
  7. Linear sketches have been widely adopted to process fast data streams, and they can be used to accurately answer frequency estimation, approximate top K items, and summarize data distributions. When data are sensitive, it is desirable to provide privacy guarantees for linear sketches to preserve private information while delivering useful results with theoretical bounds. We show that linear sketches can ensure privacy and maintain their unique properties with a small amount of noise added at initialization. From the differentially private linear sketches, we showcase that the state-of-the-art quantile sketch in the turnstile model can also be private and maintain high performance. Experiments further demonstrate that our proposed differentially private sketches are quantitatively and qualitatively similar to noise-free sketches with high utilization on synthetic and real datasets. 
    more » « less
  8. Chaudhuri, Kamalika and (Ed.)
    We study the problem of reinforcement learning (RL) with low (policy) switching cost {—} a problem well-motivated by real-life RL applications in which deployments of new policies are costly and the number of policy updates must be low. In this paper, we propose a new algorithm based on stage-wise exploration and adaptive policy elimination that achieves a regret of $$\widetilde{O}(\sqrt{H^4S^2AT})$$ while requiring a switching cost of $$O(HSA \log\log T)$$. This is an exponential improvement over the best-known switching cost $$O(H^2SA\log T)$$ among existing methods with $$\widetilde{O}(\mathrm{poly}(H,S,A)\sqrt{T})$$ regret. In the above, $S,A$ denotes the number of states and actions in an $$H$$-horizon episodic Markov Decision Process model with unknown transitions, and $$T$$ is the number of steps. As a byproduct of our new techniques, we also derive a reward-free exploration algorithm with a switching cost of $O(HSA)$. Furthermore, we prove a pair of information-theoretical lower bounds which say that (1) Any no-regret algorithm must have a switching cost of $$\Omega(HSA)$$; (2) Any $$\widetilde{O}(\sqrt{T})$$ regret algorithm must incur a switching cost of $$\Omega(HSA\log\log T)$$. Both our algorithms are thus optimal in their switching costs. 
    more » « less
  9. null (Ed.)